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‘“’I&UNAR “~OW ABOUT“-AROTATING BODY OF REVOLUTION

,) IN AN AXIAL AIRsTREAM*

By H. Schlichting

1. INTRODUCTION

,., .

The flow about a body of revolution rotating about its axis and
simultsmeouslysubjected to an airstream in the direction of the axis
of rotation is of importance for the ballistics of projectiles with
spin. In jet engines of all kinds, too, an important role is played
by the flow phenomena on a body which is situated”in a flow and which
at the same time performs a rotary motion. Investigations of
C. Wieselsbergerl regarding the air drag of slender bodies of revolution
which rotate about their axis and are at the same time subjected to a
flow in the direction of the axis of rotation showed a considerable
increase of the drag with the ratio of the circumferential velocity to
the free-stream velocity - increasing more and more, the slenderer the
body. Similar results were obtained by S. Luthander and A. Rydberg2
in tests on rotating spheres which are subjected to a flow in the direc-
tion of the axis of rotation. These authors observed, in ps,rticular, a
considerable shifting of the critical Reynolds number of the sphere
dependent on the ratio of the circumferential velocity to the free-stresm
velocity. The physical reason for these phenomena may be found in the
processes in the friction layer where, due to the rotary motion, the
fluid corotates in the neighborhood of the wall and, consequently, is
subjected to the influence of a strong centrifugal force. It is clear
that the process of separation and also the transition from lsminar to
turbulent conditions are strongly affected thereby, and that, therefore,
the rotary motion must exert a strong influence on the drag of the body.

,
*“Die l~re Strbmw um einen axial angestroxfftenrotierenden

Drehk&per.” Ingenieur-Archiv,vol. XXI, no. 4, 1953, pp. 227-244.- An
abstract
Congress

IB
‘%!.

1
2s ●

from this report was read on the VIIIInteinational Mechanics
in Istanbul on Au-t 27, 1952.
Wieselsberger, P~s’= Z. 28, 1927, p. 84.

Luthander, A. Rydberg, Phys. z. 36, 1935, P. 552.
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In the flow processes in the corotati.ng layer of the fluid, one deals
with complicated three-dimensionalboundary-layer flows which so far have
been l-ttle investigated,

3
experimentally as well as theoretically. Th. V.

&rm&I treated at an early date the special case of a disk rotating in aK
stationary liquid, for laminar and turbulent flow, as a boundary-layer
problem, according to an approximationmethod. Later, W. G. Cochran4 also
solved this problem for the lsminar case as an exact solution of the
Navier-Stokes equations. A generalization of tlis case, namely the flow
about a rotating disk in a flow approaching in the direction of the axis
of rotation, for laminar flow, has been treated recently by H. Schlichtim
and
are
ent
ity

E. TruckenbrodtS. The result most important for pr~ct~cal purposes -
the formulas for the torque of the rotating disk; it is highly depend-
on the ratio of the circumferentialvelocity to the free-stream veloc-
of the disk.

For the general case of a rotating body sbmltaneously subjected to
a flow, J. M. Burgers6 gave a few general formulations. We have set our-
selves the problem of calculating the lsminar flow on a body of revolution
in an axial flow which simultaneouslyrotates about its axisy. The prob-
lem mentioned above, the flow about a rotating disk in a flow, which we
solved some the ago, represents the first step in the calculation of the
flow on the rotating body of revolution in a flow insofar as, in the case
of a round nose, a small region about the front stagnation point of the
body of revolution may be replaced by its tangential plane.

In our problem regarding the rotating body of revolution in a flow,
for laminar flow, one of the limiting cases is known: that of the body
which is in an axial approach flow but does not rotate. The solution of

ph. v. K&m&n, Z. angew. Math. Mech. 1, 1921, p. 23>.

W. G. Cochran, Proc. Csmbridge Philos. SOC. 30, 1934, p. 365.

5H. Schlichting, E. Truckenbrodt, Z. angew. Math. Mech. 32, 1952,
p. 97; abstract in Journal Aeron. Sciences 18, 1951, p. 638.

6J. M. Burgers, Ken. Akad. van Wetenschappen, Amsterdsm 45, 1941,
p. 13.

71t is pointed out that the turb~ent case, for the rotating disk in
a flow as well as for the rotati@ body of revolution in a flow, mean-
while has been solved, in continuation of the present investigations,by
E. Truckenbrodt. Publication will take place later.- E. Truckenbrodt,
“Die Str&mng an einer angeblasenen rotierenden Scheibe bei turbulenter
Stromung,” will be published in Z. angew. Math. Mech.- E. Truckenbrodt
“Ein Quadraturverftien zur Berechnung der Reibungsschicht an axial
angestromten rotierenden Drehk&pern.” Report 52/20 of the Institut fti
Str6mungsmechanikder T. H. Braunschweig, 1952.
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this case was given by S..Tomotika8) by means of transfer of the well
known approxtiationmethod of K. Pohlhausen9 to the rotationally symmet-
rical case. The other limiting case, namely the flow in the neighborhood
of a body which rotates but.is.notjsubjected to,a flow is known only for
the rotating circular cylinderlo,

..
aside from the rotati&” disk. ““-In the

case of the cylinder one desls with a distribution of the circumferential
velocity according to the law v . cdR2/r where R signifies the cylinder
radius, r the distance from the center, and o the angular velocity of
the rotation. The velocity distribution as it is produced here by the
friction effect is -thereforethe same as in the neighborhood of a poten-
tial vortex. In contrast to the first limiting case (nonrotatingbody
subjected to a flow), the flow in the case of slender bodies which rotate
about their longitudinal sxis in a stationary fluid does not have
“boundary-layercharacter,” that is, the friction effect is not limited
to a thin layer in the proximity of the wall but takes effect in the
entire environment of the rotating body.

Very recently, L. HowarthU also made an attempt at solution for a
sphere rotating in a stationary fluid. This flow is of such a type that
in the friction layer the fluid is transported by the centrifugal forces
from the poles to the equator, and in the equator plane flows off toward
the outside.

When we treat, in what follows, the general case of the rotating body
of revolution in a flow according to the calculation methods of Prandtl’s
boundary-layer theory, we must keep in mind that this solution cannot con-
tain the limiting case of the body of revolution which only rotates but
is not subjected to a flow. However, this is no essential limitation
since this case is not of particular importance for practical purposes.

The dominant dimensionless quantity for our problem is the ratio

Circumferential velocity V
.2=*

Free-stream velocity u. u.

where Rm is to denote the radius of the maximum cross section of the
body of revolution. The calculationsmust aim at determining for a
prescribed body of revolution the torque, the drag, and beyond that,
the entire boundary-layer variation as a function of Vm U.. The

/

in a
8S. Tomotika, “Laminar Boundary Layer on the Surface of a Sphere
Uniform Stresm.” ARC Rep. 1678, 193+5.

9K. Pohlhausen, Z. angew. Math. Mech. 1, 1921, p. 2>3.

l“H. Schlichting, “Grenzschicht-Theorie,”p. 63. Karlsruhe 1951.

l%. Howarth, Philos. Msg. VII Ser. 42, 1951, p. 1,308.
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particular case Vmpm = o is already known from the boundary-layer

theory established so far. Considering what has been said above, we
must not expect our solution to

The upper limit of the value of

holds true, still remains to be
considerably above

/
Vmum = 1.

be valid for arbitrarily large vJJm.

vJum for which our calculations

determined. Presumably, it will lie

2. THE FUNDAMENTAL EQUATIONS

We take the coordinate system indicated in figure 1 as a basis for
the calculation of the flow. Let (x,y,z) be a rectangular curvilinear
fixed coordinate system. Let the x-axis be measured along a meridional
section, and the y-axis along a circular cross section so that the
xY-Pl~e is the tangential plane. The z-axis is at right angles to the
tangential plane. Let u, v, w be the velocity components in the direc-
tion of these three coordinate sxes. Furthermore, let R(x) be the
radius of the circular cross section, w the angular velocity of rota-
tion, U(x) the potential-theoreticalvelocity distribution, and
v = V/p the kinematic viscosity.

The equations of motion simplified according to the calculation
methods of the boundary-layer theory are for this coordinate system

(continuity)

U* - V-+WZ=UU+V= (momentum,meridional)
ax Ribc~zdx az2

& + Uvm+wav=va

ax R dx bZ az2
(momentum, azimuthal)

The ‘boundaryconditions are

Z=c): U=o, V=Vo.RLD, w.O; z=m: u=U(x), v.O

(1)

(2)

(3)

(4)



NACA !IM1415 5

A solution of this system of differential equations for an arbitrarily
prescribed body shape R(x) with the pertaining potential theoretical
velocity distribution U(x) leads to insurmountablemathematical diffi-
culties. We use therefore the more convenient approximationmethod which
makes use of the momentum”theorem. We obtain th~-two momentum equations
for the meridional and the azimuthal direction by integration of the
corresponding equations of motion over z from the wall z = O to a
distance “z = h > b which lies outside of the friction layer.

For the meridional direction there results by integration of (2)
over z, with consideration of the continuity equation (1) and after
introduction of the wall-shear stress for the x-direction

the momentum equation for

()au‘xO=~— az o

the meridional direction

u2~+us#p%+x*)+igu%x+vo% .252( )Y P

Therein, as is well.known,

I-6. \

is the ftl.splacementthickness whereas

5
+y . H-fv dz

Ov

may be denoted as momentum-loss thicknesses

(5)

(6)

(7)

(8)

(9)

for the x- or y-direction.



6

~ an analogous manner
integration of (3) over z
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there results for the azimuthal direction by
with

tion (1) and introduction of the
consideration of the continuity equa-
wall-shear stress for the y-direction

as the momentum theorem for the circumferential

%(m30xY) = -“:

Therein

has been introduced as the “momentum loss thickness

(lo)

direction

(11)

According to
as given first by

(12)

due to spin.”

3. APPROXIMATION MEJTHODS

(a) The Velocity Distributions

the approximationmethod of the boundary-layer theory
Th. v. K&m& and K. Pohlhausen, the momentum eaua-

tions (6) and (ii) are satisfied by setting up suitable formulati&s for
the velocity distributions u and v which satisfy the most important
boundary conditions. For the present case, two parameters may still be
left undetermined in these equations for the determination of which the
two momentum equations are then available. As expressions for the veloc-
ity distribution,polynomials in the distance from the wall have proved
to be suitable, with the property that the boundary layer joins at a
finite wall distance z = 5 the frictionl.essouter flow. The boundary-
layer thickness may be different for the meridional and the azimuthal
velocity component. Let these boundary-layer thicknesses be ?& and

5
Y’

respectively;we introduce the dtiensionlesswall distances formed

with them

(13)
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.

For the velocity distributions u and v,
the fourth degree in t and t’, respectively.
cients each so that. for determination of these,.
satisfy five bounda$y
following 10 boundary

t =0: U=o

t=l: U=u

t’=o: V=vo

t’ = 1: V.o

-,.
conditions each
conditions:

a2u
v—=
azz

&=()
dz

=FkD a2v -0

322

&J=o
az

we select polynomials of
These contain five coeffi-
coefficients,we can

~or u and v. ‘We choose the

-udU V02 ~
—.— .
dx Rdx

%u.o
322

1

(lka,b,c,d,e)

I (l%, b,c,d,e)
a2v - 0

az2

The boundary conditions (14a, b, c) and (15a, b, c) result immediately
from the fundamental equations (2) and (3) with (4) for z = O and
z = 5X or ~. The remaining boundary conditions provide a gentle

transition of the boundary layer into the outer flow. Taking these
boundary conditions into consideration,one obtains the following poly-
nomials as expressions for the velocity distributions

LL.2t- (2@+t4+K~t_@+@J . tk)

u 6
(16)

v—= 1- 2t’ + 2t’3 - tt4 (17)
‘o

Therein

‘=+%’(’RI



8

is a
form

/Uu

flow
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form parameter of the u-velocity profile, which is analogous to the
parameter A of the Pohlhausen method=. The velocity distributions
and V/vO are represented in figure 2.

Let the point of separation be given by the beginning of the return
of the meridional velocity component u(z) in the proximity of the

()auXZ=o =
o

yields

K = -12 (separation) (19)

The expression for the u-component is the same as in the Pohlhausen
method for the plane and rotationally symmetrical case. This guarantees
that our solution in the case without rotation, w = O, will be trans-
formed into the solution of S. Tmotika and F. W. Schol..kemeyer13for the
nonrotating body of revolution. Introduction of the expressions (16)
and (17) into the momentum equations (6) and (11) yields two differential
equations for the still unknown boundary-layer thicknesses bx(X) and

by(x) or the quantities derived from them.

(b) The Momentum Equation for the Circumferential Direction

We present first the further calculation for the momentum equation
of the circumferential direction. With

‘Yo

P
. ()~aJ

az o

. (20)

there results from (11), after division by u,

{1~R3U~w = 2335
dx %

(21)

‘Cf. H. Schlichting, “Grenzschicht-Theorie,”p. 193.

13~. w. Scholkeme{ery “Die laminare Reibungsschicht an rotations-
symmetrischenKorpern. Dissertation Braunschweig 1943, Cf. H.
Sckd.ichting,Grenzschicht-Theorie,p. 204.
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With introduction of the further parameters

----- . . ,., ... ,

as well as

,,

and

‘KYgo=y and A= %

Y 6X

one obtains from (21) the following differential equation for G(X)

d@_ G(K,A)——
dx u

9

(22)

(i3)

(24)

(2’5)

Therein is

G(K,A) = 4g~ - 2a (26)

a universal function of the two parameters K and A.

This function has been determined already by W. Dienemann14 in the
calculation of the temperature boundary layer on a cylinder (two-

dimensional problem).15 For the temperature distribution in the boundary
layer there we chose the same polynomial,of the fourth degree as we did
for the azimuthal velocity distribution accorting to (17). According to
(12) we have

Because of

‘%. Dienemann, “Berechn~ des Wtietiberganges an lsminar ~trOmten
Korpern mit konstanter und ortsveriinderlicherWandtemperatur.” Disserta-
tion Braunschweig, 1951, Z. angew. Math. Mech. 33, 1953, p. 89.

15with the symbols according to W. Dienemann there apply the
identities Ht ~go and A -K.
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one obtains after calculation of the integral with the velocity distri-
butions (16) and (17) the quantity go as a function of K and A.

According to W. Dienemann, there results

@(J%d = q(d + Q32(A)

A~l: gl(A) = ~ - &p+&k

(27)

I

The function gO(A) as a function of A for various values of K is

represented in figure 3. Table 1 gives a few numerical vslues of the
functions gl(A) and g2(A). -

TABLE I.- THE UNIVERSAL FUNCTIONS gl(A) AND

ACCO~~G TO EQUATION (28)

A

o
.2
.4
.6
●7
.8
●9

1.0
1.2
1.4
I_.6
I_.8
2.0
2.5
3.0

gl(A)

o
.0053
.0208
.0457
.0606
.0784
.0970
.U.75
.1614
.2089
.2589
.3109
.3643
.5021
.6437

100g2(A)

o
.036
.114
.205
.249
.291
.329
.364
.423
.471
.510
.541
.568
.618
.651
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(c) The M~m~ntum Equation f.. the Meridional Direction

Further transformation of the momentum equation for the meridiond
direction yields, if one introduces~ according to Holstein-Bo~en16 and

- Snabgc)us to (23)

3X2
z=— ~=@Q

v dx

the following differential equation for Z(x)

dz F(K,A)..—
dx u

Therein

(29)

(30)

I [() 1}F(K,A)= 2f5. (2X+ M2)- ~~1+ ‘O 2%
T f~

(31)

exactly as G(K,A) in (26) a universal function of the two parameters
K and A. Individually,the following relationshipsapply:

fo(K)= ~=&&__ K2

x 945 9,072

5X*
fl(K)= ~=&_&

x

fl(K)
f2(K) = ~-

x fo(K)

A ~~x ~—= __
fO(K) 5X ax = ~

(32)

(33)

(34)

(351

(36)

16Cf. H. Schlichting, Grenzschicht-~eorie, p. 195.

—,,.. - ——,.—-, .. ... .... ...—
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(37)

The above functions of K are already known from the calculation of the
boundary layer of the two-dimensionalcase.17

The connection between Z and K results from (18), with considera-
tion of (29) and (32), and is

(38)

Taking X= ZU’, from (29), into consideration, one may write this because
of (32) alSO in the form

(39)

In figure k the universal functions fo, f2, f3, and K are

represented as functions of X*. At the point of separation, for arbi-
trary rotational velocity, one will have, because of K = -1.2, the
parameter X* = -0.1567. At the stagnation point, without rotation,
K = 4.716 and X* = 0.05708, whereas with rotation the values at the
stagnation point are dependent on the spin parameter vo/U (cf. the

following section). From (38) the form parameter K c& be determined
when Z is given. Furthermore, for the later calculation a connection
between the psxameters A, go, G, Z, end K is needed. There results
according to (22), (23), (29), and (32) as follows

The two differential equations (25) for e(x)
are two simultaneous differential equations coupled
functions G(k,A) and F(K,A). In the case of the

(40)

and (30) for Z(x)
by the universal
nonrotating body,

‘o ‘ O, the coupling is eliminated since then, according to (31), the

function F becomes independent of A and remains dependent only on K.

17Cf. H. Schlichting, Grenzschicht-Theorie,Chapter XII.
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In this case, one can first determine Z(x) from (30), and subsequently
G(x) from (2~). This solution for @ has - it is true - no physical
significance. It serves merely for giving the limiting value for.
,v&iishi@”speed of rotatibn. ‘ ‘ ,. .,. ..

(d) The Initial Values at the Stagnation Point

At the stagnation point where U = O, the two differential equa-
tions (25) and (30) have a singular value since in both eqyations on
the right side the denominator vanishes. In order to obtain at the
stagnation point initial slopes of finite magnitude, dE@x and dZ/dx
finite, the numerators also must disappear in these two equations for
the stagnation point. This requirement yields the initial values of
the parameters ~ and ~ at the stagnation point. For the potential.

flow there applies at the stagnation point

x+O: U(x) =UO’R = sR =.1 (41)
dx

.
The initial values of the meridional equation are obtained from

F = O according to (31)

f30 - 2% - ~fpo -
~l+btrl=o. .

With

[ (dK&lop= ~ 1 + Q\2a

according to (~), with

() !!,f30=foo2+6

according to (36), and ho according to (37), there results after a

brief calculation

‘o = (42)

,. . . . ..
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a given speed of rotation u/a, this is the first equation between ~
initial values ~ and ~. For the case without rotation, m. O, ‘.,

boundary-layer thickness ratio ~ drops out from this equation,

an equation for the initial value ~ only remains which reads

2+* +*2+*3=0 “ (43)

physically useful solution of this equation is

()‘o ~. = so = 4.716 (44)

as known according to S. Tomotika.

For the initial values of the azimuthal,equation, one obtains from
G = O according to (26)

Zgo(%”%) -

Because of

0(%%) = 4a@.

according to (24) and

+@J =o

according to (18) and because of (27) one obtains after a short inter-
mediate calculation

= 2 gl(&J) + I&(i%g%z
l+; ~ [

(45)
Q
a

For a given
the initial

speed of rotation u/a, this is the second equation between
values ~ and ~.
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For the case without rotation, m = O,

~ ‘ Koo = 4.716
according to (44) for the

-(%)
= ~ the equati?n .. ..

&o,.

one obtains from (45) with
initial value of’

[
l-g.43~02gl(qo) +4:716g2(~)] =0 (46)

Hence results with gl(A) and g2(A) according to (27) and (28)

*O= 0.915 (47)

The ratio of the boundsry-layer thicknesses A = ~l~x for the azimuthal

and meridional velocity distribution therefore lies near 1 which is
physically plausible.

The two equations (42) and (45) now represent, for prescribed
angular velocity w/a, two equations for the initial values KO and Ao.

A solution was obtained by determining from both equations the values of

/[ u]CD2KO1+; as a function of ~ for various fixed values K..

Hence, the initial values indicated in table 2 result. These values are
presented in figure 5 as a function of m/a. It was found that for
values of w/a > 0.815, no usable initial values of K. and ~ exist;

that is, our method fails for these larger values of u/a. The limit
beyond which our calculationmethod fails coincides with the value K = 12

of the form parsmeter18. The initial values Xo, XO*, and

mined from the initial values K. and ~ are represented

and table 2, as a function of m/a.

E@() deter-
in figure 5

l-%or K > 12, because of the effect of the centrifugal forces, it
“ is entirely possible in the present case to obtain velocity profiles
with u/U > 1.
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g
a

o
.221
;:;;

.785

.815

TABLE 2.- INITIAL VALmS AT THE STAGNATION FQINT

I I
K
o

A. look

I I

4.71_6
5

:
10
lz!

0.915
.908
.882
.838
.781
.726

5.71
5.71
5.70
5.69
5.69
5.69

5.71
5*99
6.89
8.32
9.19
9.49

Finally we obtain the initial value for Z simply in
manner with U.’ = a

‘oZo=y

i Ip “’
I

0.0629
.0632
.0640
.0651
.0661
.0664

the following

(48)

The initial value for G results with 00 = 2~0 accorq to (24) as

(49)

The expression for the velocity ~stribution used here (parabola of
the fourth degree for u and v) is different from that of our former
calcul.ation19for the rotating disk in a flow. It must be expected,
however, that the boundary-layer parameters of the rotating disk in a
flow should agree approximatelywith those at the stagnation point of
the rotating body of revolution if both methods are to yield usable
resuits. We give tlxlscomparison for the momentum-loss thickness in
x-direction (8) at the stagnation point and for the meridional component
of the wall shear stress at the stagnation point.
momentum-loss thickness at the stagnation point is
with Ux=o’ = a

The dimensionless
according to (29)

(50)

19See footnote 5 on page 2.
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,’The meridional component of the wall-shear stress
point

()
‘% ~=o ‘ “o

is according to (5), (16),

A. .,,.. ....... ..

‘rove= (’;(%$ .’$(j-
puz v %

17

at the stagnation
and (32)

(51)

The values calculated accordingly are compared with those of the rotati’ng
disk in figure 6.20 The agreement up to the vslliditylimit of our cal.
culation (u/a = 0.815) ‘isqyite satisfactory.

Hence we conclude that our present calculation yields satisfactory
results in the entire range o <u/a <0.815.

4. TORQUE AND FRICTIONAL DRAG

(a) Torque

The entire torque of the body of revolution may be easily ascer-
tained from the results of the boundary-layer calculation in the
following manner: The contribution of am element of the body of revolution
with the radius R(x) ad the arc length dx is (fig. 7)

dM = -2tiR2Tyodx

and thus the total torque

(52)

where xA Si@fieS the arc length from the stagnation point to the

point of separation. Taking the momentum theorem for the circumferential
direction (n) into consideration, one obtains

2%hereas the values for the wall-shear stress could be tsken
directly from the report referred to in footnote 5 (p. 227, table 2),
the values for the momentum-loss thickness were calculated subsequently
with application of equation (8) with the velocity distributions indi-
cated there.
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(53)

where the subscript A denotes the values at the separation point.
From the boundary-layer calculation, one knows the value of the momentum
thickness due to spin at the separation point in the dimensionless form

(54)

where ~ is assumedto denote the radius of the maximum cross-sectional.

area.

If one introduces - in the same manner as for the rotating disk -
a dimensionless spin coefficient by

_—

% - yM%5

one obtains

(55)

(56)

where Vm = I$fllis the circumferentialvelocity of the ms.ximumcross-

sectional area. Since, as the completely calculated examples show, the
dimensionlessmomentum thickness due to spin B varies at the separa-
tion point only a little with Vm/Um, cM is in first approximation

proportional to

number @&/v.

For the case

/
UmVm and inversely proportional to the Reynolds

of the rotating disk in a flow, with the radius ~=R,

one obtains because of RA = R, UA = aR from (56) in combination

with (54)

(57)
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and with the numerical,value

‘r
~79====-.+. ... . .,_...,,,
v Xy ‘

~. according to (49)

r-)E@ = o.251
2 t+=o

ECM“%
in very good agreement with the former investigation21
cd value is 3.17.

The frictional drag
mined by integration of

—

(b) Frictional Drag

where the numeri-

of the rotating body of revolution may be deter-
the wall-shear stress components TXO . A sur-

face ring element of the body of revolution with the radius ‘R(x) and
the src length dx (fig. 7) yields the drag

Therein
from the

Tq. 0,

We shall

dW = 2JtRT
XCti

(58)

r is the coordinate measured along the body axis. Integration
stagnation point x=

yields

w=

refer the drag to the

O to the separation point XA, where

J
2A

2fi
‘%R& (59)

o

maximum cross-sectionalarea fi~2 and

define the drag coefficient

(60)

21.cf.footnote 5 on page 2, equation (49a).

!
I

I

1



20

Since we obtain the wall-shear stress in

r‘% ‘J%.—— _
2Vc%

we may write for the drag coefficient

the

T

dimensionlesss

NACA TM 1415

form

(62)

5. EXAMPLES

(a) Sphere

As the first example, the friction layer on the rotating sphere was ‘
calculated. When Rm signifies the sphere radius,

/

x the arc length,
and x ~ = cp the center angle measured starting from the stagnation

point, the radius distribution is

R(x) = ~ sin(p , (63)
‘:!.“-’

and the theoretical potential velocity distribution

The velocity gradient at the stagnation point is

and thus

(64)

(65)
t
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Since, according to the explanations in section 3, the calculation
~be carried out only for u/a < 0.815, we must limit ourselves to

< 3 0.815 = 1.22.:yJuw = -
‘“”2’ * ....... ,,=. .,,

The
taneous

&d 1.
further

solutions are obtained by numerical integration of the two

21

can

simul-
differential equations (25) and (30) for the two cases vm/um = o

The calculation scheme is given in table 3. The results for
values of Vm/Um could hence be obtained convenientlyby inter-

polation. The case
of Scholkemeye&’2.
table 4 ahd figures

mlV U. = O (nonrotating sphere) agrees with the case
The results of the calculation are represented in
8 to U.

TARLE3.- CALCULM!IONSCREMS FOR TRE SOLUTION OF TRS TWO

SIMULTANEOUS~IALFWJATIONS (25) AND (30)

m prescribed

p x R(x) ~=R’ u(x) g=u’ VO=KR

Givan
<—body fom and potential flow~

Zv x X* K fo *2 ‘3

Ihitial =Zu‘ Eq. (39) Fig. 4 Fig. 4 Fig. 4 Fig. 4
value initial
given Wciue
(eq. (48)) (table 2)

TO be wil.culated

~~ by ~—>

,% 2G
()
p 2% ~

@ A +30 ~ *O
~ Az zw~ G QQ ~ @
ax ax WI

Initial Eq. (24) Eq. (40) Fig. 3 q ~=~ Eq. (31) Eq. (30) Eq. (26) Eq. (25)
value
(eq. (49))

< To be calculated Mm by line >

TABIE4.- POSITION OF SEPARATION POINT AND OF THE TORQUE IN

DEPENDENCE ON Vm U. FOR THE ROTATING SPHERE IN A FLOW

Spin
parameter,

o
.25
.50
.75

1.00
1.22

Separation Torque,point,

~A”
r

h a%
Um v

108.2
108.0
107.3
106.2
104.9
103 ● 5

9.15
9.14
9.06
9.03
8.9Ij
8.85

22Footnote 13 on page 8.
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Figure 8 gives the variation of the form parsmeter K of the merid-
ional component of the velocity distribution in the boundary layer. The
initial values ~ at the stagnation point are i.nmediatelygiven in

table 2 with equation (65). At msxim& velocity, q = 90°, K is,

/
according to (18), equal to zero for all Vm Um, because in a sphere at

the point where dU/dx . 0, also dR/dx = O. The value K = -12 gives
the position of the separation point A. In figure 8 the variation of
the boundary-layer thickness ratio A= ~l~x is also plotted; it always

lies close to 1 and also changes only little ’with V~Um. Figure 9 shows

the variation of the momentum thickness due to spin ‘W “ The curves for

various ‘mI“m almost coincide. The same is true for the momentum-loss

thickness Ox and the friction-layer thicknesses 8X and ~. Figure 10

shows the variation of the meridional and azimuthal component of the’
wall-shear stress. The meridional component Txo increases with the

spin coefficient vm/u. only a little whereas the azimuthal compo-

nent 7% in first approximation is proportional to the spin coeffi-

/cient Vm U . The position of the separation point as a function of

the spin co~fficient Vm~@ is given in table 4. For the nonrotating

sphere cpA= 108.2°, d
and for V Um = 1.22 the separation point shifts

forward to rpA= 103.5°. This displacement of the separation point

because of the rotation is due to the effect of the centrifugal forces
and is, clearly, ixmnediatelyplausible. For the velocity profiles
behind the equatoial plane (q)> 900), the centrifugal forces have the

$effect of an add tional pressure increase in flow direction and there-
fore cause the separation point to shift forward. In figure 11 the
dimensionless torque coefficient formed according to equation (56) is
represented as a function of the spin coefficient vm/um. (Cf. table 4.)

One sees that the proportionality with Vm/Um is fulfilled with very

good approximation. Finally, figure 12 shows several velocity profiles
in photographic reproduction.

A sphere is rather unsuitable for the comparison of the theoretical
calculationwith test results, because of the large dead-water zone which

~ has the effect that even in the case of the nonrotating sphere the posi-
tions of the separation point according to theory and to measurement do
not agree when the boundary-layer calculation is based on the potential-
theoretical pressure distribution as we have done here. A valid compari-
son regarding the influence of the rotation on the behavior of the fric-
tion layer can be made only for a slender body where no noteworthy
dead-water zone develops. Nevertheless we mention here the measured
results of S. Luthsmder and A. Rydberg 23. In figure 13 the drag coef-
ficient of the sphere in dependence on the Reynolds number Re for

/various values of Vm U. is given according to these measurements. For

the nonrotating sphere, vm/um = o, and up to values of Vm/”m to about

3, the curve ~ against Re shows the characteristicvariation with

23Footnote 2 on page 1.
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the familiar sudden drop at the so-called critical Reynolds number. It
is ’knownthat for Reynolds numbers below the critical Reynolds number
the friction layer undergoes laminar separation, and for numbers above
‘%liecritical Reynolds number, in contrast,.a ,tuxbulentone. In the case
without rotation, the laminar separation point lies at about q = “8i0,
the turbulent one, in contrast, at about q = 110° to 120°. The meas-
urement with rotation show for Vm/Um = O tO 1.4 a shifting of the

critical Reynolds numbers toward higher values of Re. This shifting
of the critical Reynolds number to higher values for small Vm/Um is

probably brought about by the fact that for vm/um = o the laminar

separation point is shifted from q = 81° to higher Q-values, with the
separation still remaining laminar, however.
Vm/U~, the rotation causes

Only for higher values of
the friction layer to become prematurely tur-

bulent, and it then has the effect of a trip wire whereby a shifting of
the critical Reynolds number to lower Reynolds numbers takes place.

Whereas in our theoretical calculations a forward displacement of
the separation point occurs, due to the influence of the rotation, the

4
measurements for small values of V U indicate a shifting of the
separation point toward the rear. On ~he basis of the effect of the
centrifu$@. forces, this must be expected, if one takes into considera-
tion that in the case without rotation the laminar separation point lies,
according to theory, behind the ecpa.tor,according to measurement, how-
ever, ahead of the equator. In both cases, the separation point is
shifted toward the equator by the effect of the centrifugal.forces as
is to be expected, at least for small Vm/”mj as long as no premature

Ilaminar tmbulent transition has been produced by the rotation.

(b) Bodies With a Base (Half-Bodies)

As a second exsmple we shall now treat the so-called half-body
(body of revolution I) which originates by superposition of a transla-
tional flow on a three-dimensional source flow. If one denotes by Rm
the
for

largest radius at infinity, the following parametric representation
the geometrical data of the body24 is

R—= sin ~
Rm

.,

(66)

2%or these relationships as well as for the numerical calculations
of section 5a, I an indebted to Dr. E. Truckenbrodt. The example calcu-
lations of sections 5b and c are taken from the thesis of K. H. Gronau,
1952.
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2’ ‘%’’--+F(E(NO(NO (67)25

Here q is the angle measured from the forward stagnation point.
F and E are the incomplete elliptical integrals of the first and
second kind for the modulus a = 60°.

The velocity distribution is

(68)

The form of the body and the velocity distribution are represented in
figure 14. This figure shows, for various values of the spin param-

/
eter Vm U., the variation of the form parsmeter K with the distance

along the body. One sees that already for v~um = 1.3 only positive

values of K result. This means that due to the rotation the laminsx
friction layer has become more stable because in the present case the
centrifugal forces accelerate in the direction of the flow and thus
have tileeffect of an additional pressure drop. We shall forego dis-
cussing here all the results. In figure 15 we have represented the

r

Vm u&
torque coefficient ~ —I% against the length L/~ of the half

m v

body. Moreover, the asymptotic solution was drawn in for comparison;
one can derive for it the relationship

(69)

Aside from the torque, the frictional drag also was determined.
Figure I-6 presents a compilation of the torque coefficient and of the
drag coefficient in dependence on the spin psrsmeter Vm/”. for vari -
ous body lengths L/~. It should be emphasized that the drag coeff i -
cient is increasing about quadratically with the spin parameter which
is in qualitative agreement with the test results that have become
known so far.

‘+E and F signify
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(c) Streamline Bodies

As further
-thickness ratio

examples we also calculated two streamline ‘bodiesof the
D/L = 0.2 (bodies of revolution II and 111). The body

shapes snd the per~aining ve’iocitydistributionswere taken from-the -

report of A. D. Young and E. Young26 (fig. 17). The body of revolution II
@s as a meridional section a normzd.profile; the body of revolution III,
in contrast, has a lsminar profile with the velocity maximum lying rela-
tively far downstream. Of the results, figure 18 shows the torque coef-
ficient and the frictional drag coefficient as a function of the spin

ml
parameter V Um. m both cases, there are not large differences between

the bodies. For the rest, the variation is similar to that in the case
of the body with a base. In figure 19, the position of the separation
points is shown as a function of the spin parameter vm/um. In agreement

with the values for the rotating sphere (cf. table 4), the separation
point shifts forward with increasing rotational speed. This displacement
is larger for the body of revolution II than for the body of revolu-
tion III which is made understandableby the position of the velocity
maximum. Finally, we gave for the body of revolution II a graphic repre-
sentation of the velocity distributions in the friction layer for the spin
parameters Vm/U@ = O and Vm/Um = 1 (fig. 20). From it one sees that

ahead of the pressure minimum the meridional velocity component does not
vary noticeably due to the influence of the rotation whereas between the
pressure minimum and the separation point the influence of the rotation
is considerable.

A calculation method is
body of revolution in a flow

6. SUMMARY

given by which the flow about a rotating
which approaches in the direction of the

axis of rotation may be determined on the basis of boundary-layer theory.
The investigationsyield a contribution to the aerodynamics of a pro-
jectile with spin. The calculation is carried out for the laminar
boundary layer with the aid of the momentum theorem which is stated for
the meridional and for the circumferentialdirection. The performance
of the calculation requires the solution of two ordinary simultaneous
differential equations of the first order. It yields, in addition to
the boundary-layer parameters, the frictional drag and the torque as a
function of the dimensionless spin coefficient Vm~@ = circumferential

velocitylfree-stresmvelocity. The displacement of the separation point

,,..

26
A. D. Young, E. Young, “A fsmi.lyof streamline bodies of revolu-

tion suitable for high-speed and low-drag requirements.” ARC Report 2204,
1951.

—.
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with the spin coefficient also’is obtained. As exsmples, the flow about
a rotating SPhereJ about a body with a base) and about two stre~ine
bodies is treated.

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics
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1= z‘+*;+Ty

Figure2.- Velocitydistributionsinmeridionaland inazimuthaldirection.

Figure 3.- The universalfunctionA = 8y/5x aS a fUnCtiOnOf gO(A)= b~y/5x
,:y.

accordingto (27)and (28).



NACA TM lhl> 29

-—. .,. ., ...,

A
I 1.8
I

7
.

i.6 / “?
/ I

/ .5f3 I4
I {4 A #
I

;Iofo ‘1
I
I

) - i.o

I
I 0.8
I

/
I
I
I / -——
I

I 0.3 .
6.0948’

1 -0.12 -0.08 -0.04 0.- ~
I -o.1567
I

, I
I I
I -0.4 I
I

:t
I

/
-0.6- ‘ ,

I I

/ -0,8-
1

I I
I

I -1.0 I
I

-1.2

Figure4.- The universalfunctions

and K as a functionof

fo= +xj~~, f2 = ~x*& fa= TxO/v ~xiu

x* according to (32) to (39).



3C NACA TM 1415

A
1.4 \

1.2

4.0- A. I

~ I
08

!o XO*
/

/ ‘1
0,6 /~ “

4
a I

I
04 ‘ I

I
I

0.2 1
I QJ

jO.815 T

o
>

0.2 0,4 0.6 0.8 1.0

F@ure 5.- The initialvaluesatthestagnationpoint AO, KO, XO,and xO*.



—.
I

I

I

NACA lM 1415

— .. ..

1.6

1.2

O.e

-, ’...

,.

-J- ‘
f

UR ‘XO
T p~ /“

/-

t \
d,

4 — r—

.4—

T’ I
— —

L/-UR O)(o
4 ——

v R
I

1
—

According to
———— I

H. Schlichting and E, Truckenbrodt +
I

0.2 0.4 0.6 0.8 1.0
-

31
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Figure 12.- Photographicrepresentationofthevelocitydistributions
intheboundarylayeroftherotatingsphereina flow,Vm/U~ = 1,
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Figure13.- Drag coefficientsoftherotatingsphere ina flowas a
functionoftheReynoldsnumber, accordingtomeasurements of
S.Luthanderand A. Rydberg.
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